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Abstract. In this paper, we consider the problem of predicate encryp-
tion and focus on the predicate for testing whether the hamming distance
between the attribute X of a data item and a target V is equal to (or less
than) a threshold t where X and V are of length m. Existing solutions
either do not provide attribute protection or produce a big ciphertext
of size O(m2m). For the equality version of the problem, we provide
a scheme which is match-concealing (MC) secure and the sizes of the
ciphertext and token are both O(m). For the inequality version of the
problem, we give two practical schemes. The first one, also achieving MC
security, produces ciphertext with size O(mtmax) if the maximum value
of t, tmax, is known in advance and is a constant. We also show how to
update the ciphertext if the user wants to increase tmax without con-
structing the ciphertext from scratch. On the other hand, in many real
applications, the security requirement can be lowered from MC to MR
(match-revealing). Our second scheme, which is MR secure, produces
ciphertext of size O(m) and token of size O((t + 1)m) only.

Key words: predicate encryption, anonymous fuzzy identity-based en-
cryption, inner-product encryption

1 Introduction

It is getting more popular for a data owner to take advantage of the storage
and computing resources of a data center to hold the data in encrypted form.
Users will be given a token (by the owner) to access the data so that only au-
thorized records can be retrieved and later be decrypted on the user site. Due
to the privacy and security concern, it is obvious that the data will not be de-
crypted at the data center and checked against the criteria one by one. Thus
computation is required to be carried out on encrypted data directly. Exam-
ples are retrieval of encrypted documents based on keyword matching, selection
of encrypted audit logs using multi-dimensional range query on authorized IP
addresses or port numbers, and hamming distance based similarity search on en-
crypted DNA sequence data. The problem, in fact, has received much attention
from both database community [16, 3, 17, 13, 18, 27] and cryptography commu-
nity [26, 4, 24, 10, 19].

In general, the problem can be stated as follows. For each data item M ,
there is an associated attribute value X (X may not be part of the record M)
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and let f : {0, 1}∗ → {0, 1} be a predicate which represents the computation we
want to carried out on ciphertexts such that the data item M can be successfully
decrypted if and only if f(X) = 1. Authorized users will obtain a token generated
by the owner in order to perform the predicate evaluation. The predicate can
take additional parameters, so a different token can be generated for a different
parameter value which increases the flexibility of the data owner to provide
different access power to different users. Here is an example. Each medicate
record (M) is encrypted along with a selected region of the DNA sequence (X)
of the person. When a research team is authorized to investigate the relationship
between a certain DNA sequence V with diseases, this team would acquire a
token which corresponds to the predicate f such that f(X) = 1 if and only if
HammingDist(X, V ) ≤ t, say t = 5. By using the token, the research team
would decrypt all medicate records for which the corresponding DNA sequence
is similar to V . In the above motivating example, it is obvious that the research
team should not infer any information on records for which the corresponding
attribute X which is far away from V (i.e. HammingDist(X, V ) > 5) since they
are not authorized to do so. And it is desirable that the ciphertext E(pk, I, M),
where pk is the public key generated by the data owner, is the same for different
V and t values such that the encryption of data items needs only to be done once.
This emerging branch of encryption schemes are referred as predicate encryption.

Here we focus on the predicate f that tests whether the hamming distance
between V and X is equal to (or less than) a certain threshold t, where V and
X can be assumed as bit vectors of equal length m. Similarity search based
on hamming distance1 is an important searching criterion for record retrieval.
This leads to many interesting applications in databases, bioinformatics, and
other areas. Note that V and t can vary and will be given to the owner for the
generation of a token independent of the ciphertext E(pk, I, M).

The security of predicate encryption [19] can be classified into (1) protect-
ing the data item only; and (2) protecting both the data item and attributes.
Attribute protection is usually referred as anonymous in general and can be fur-
ther classified into two levels: match-revealing (MR) [24] and match-concealing2

(MC) [10, 19]. The difference between MR and MC is that attributes will re-
main hidden in MC level even if it satisfies the predicate. While in MR level,
if attribute X satisfies the predicate f (i.e. f(X) = 1), some more information
on X other than the information of f(X) = 1 can be leaked. In our “medicate
record” example, we sometimes require the encryption scheme to be anonymous
such that the DNA sequence is protected. In such cases, for example, DNA se-
quence may contain genetic disorder information which should be kept private
for individuals. It depends on applications whether we require MC or MR level
of security. For example, if attribute X is part of data item M , when X satis-
fies the predicate, data item M will be properly decrypted and therefore people

1 It is well known that hamming distance of two bit vectors can provide a good nec-
essary condition for the corresponding edit distance [11, 2] which would be useful in
many database applications.

2 In [19], match-concealing is called attribute-hiding.
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can see the entire X (this is allowed by that application semantics). In such
case, MR security seems to be a proper choice. So far, the predicate encryption
scheme supporting this predicate is the one in [25], called “Fuzzy Identity-Based
Encryption”. However, it does not provide the property of anonymity (i.e., at-
tribute protection). In this paper, we propose “anonymous fuzzy identity-based
encryption” schemes to handle both the equality threshold and the inequality
threshold (less than or equal to) versions of the predicate.

It is not trivial how to make the scheme in [25] anonymous. On the other
hand, there is a generic solution [10] (see Appendix A) that can support the
predicate we study with the property of anonymity and is MC secure. Their
scheme provides a general construction to support any polynomial computable
predicate. However, their scheme embeds (pre-computes for) every possible value
of V and t in the ciphertext even for the equality threshold version of the problem
(the same applies to the inequality version), thus the size of each ciphertext is
O(m2m) which is impractical even for moderate m although the token size is
constant.

1.1 Our contributions

For the equality threshold version, we provide an anonymous fuzzy identity-
based encryption scheme achieving the MC level of security with both the sizes
of ciphertext and token equal to O(m). The construction is based on an inner-
product encryption scheme in [19]. The core idea is to represent the hamming
distance computation as an inner product such that X and V can be separated
into the ciphertext and the token, respectively, so that V can be given only when
the token is needed to be generated.

For the inequality threshold version, we provide two practical schemes to solve
the problem. In many applications (e.g. in bioinformatics applications), t << m.
Even assuming that we know the maximum value of t (tmax) in advance and is
a constant, the size of the ciphertext produced by the solution based on [10] is
still O(2m). In our first scheme, also achieving the MC security level, the sizes
of ciphertext is only O(mtmax) (precisely,

∑tmax+1
i=0

(
m
i

)
) which is much smaller

than O(2m) if tmax << m. The core of this scheme is to come up with an inner
product expression with a total number of

∑t+1
i=0

(
m
i

)
terms to express whether

HammingDist(X, V ) ≤ t and modifying the scheme in [19] to a new primitive
to support our encryption scheme. We also show how to update the ciphertext if
the user wants to increase the value of tmax without recomputing the ciphertext
from scratch.

On the other hand, in many applications (in particular for those where the
attribute X is part of the data item M), we only require the schemes to be MR
secure. By lowering the security requirement to MR, we provide another scheme
in which the sizes of ciphertext and token are only O(m) and O((t + 1)m),
respectively which is attractive for real applications.
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1.2 Related Works

The predicate that was studied in the very beginning is “exact keyword match-
ing”. That is, whether the value hidden by the token is equal to the attribute
value hidden in the ciphertext. Schemes that only provide data item security
are basically “Identity-Based Encryption” [22, 6]. Schemes protecting both the
data item and the attributes were initiated by Song et al. [26] in the private-key
setting and by Boneh et al. [5] in the public-key setting. Relationship between
[5] and “Anonymous Identity-Based Encryption” [9, 14] was revisited in [1].

Then, range query as the predicate was also considered. Boneh et al. devised
an Augmented Broadcast Encryption [8] which allows checking if the attribute
value falls within a range on encrypted data. Their scheme also provides attribute
protection. Then, Boneh and Waters [10] extended it to multi-dimensional range
query. Shi et al. [24] devised a more efficient scheme for multi-dimensional range
query, but the scheme is MR secure.

The predicate investigated in this paper was initiated by [25] which only
protects the data item. This predicate is powerful and has many applications
other than those stated in [25]. However, there is no practical scheme supporting
this predicate with attribute protection in a public-key setting. Park et al. [21]
investigated this problem in the private-key setting and is IND2-CKA secure.
Liesdonk [20] also investigated this problem in his master thesis. His scheme is
in a public-key setting. However, the scheme requires the threshold value t to be
fixed in the setup time.

Our work is using [19] as a framework. [19] provided schemes for handling
predicates represented as inner products. Their formulation of using inner prod-
ucts with bounded disjunction is powerful. We show how to reduce inner products
to hamming distance similarity comparison predicate, then derive a slightly dif-
ferent encryption scheme for better performance when considering the inequality
case. In our work, we consider the problem of attribute protection in public-key
setting. In some applications, people may also want to provide protection to
predicate (“the token”), which is inherently unachievable in public-key setting.
Note that a predicate encryption supporting inner product in private-key setting
has been devised in [23] which can provide predicate privacy.

1.3 Paper Organization

The rest of this paper is organized as follows. Section 2 introduces the frame-
work of the encryption scheme, the security models and the hard problem as-
sumption. Section 3 presents the scheme for the equality threshold version (i.e.,
HammingDist(V, X) = t) of the problem and Section 4 deals with the inequality
threshold version (i.e., HammingDist(V, X) ≤ t) of the problem. We conclude
the paper in Section 5.

2 Preliminaries

We assume that the attribute X is represented as a bit vector. The attribute V
(referred as the target attribute) provided by the user to generate the token is
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also a bit vector of the same length as X . In the rest of the paper, for simplicity,
we focus on predicate-only encryption, that is, we assume that we only have X
without M . So, the scheme will output “1” to indicate the decryption is successful
(f(X) = 1) and “0” otherwise. Note that extending solutions for predicate-only
encryption to include the data item M can be done easily [19]. Also, there exist
applications that we only need to encrypt the attribute X and based on the
decryption result to retrieve the corresponding records separately.

2.1 Framework

An anonymous fuzzy identity-based encryption scheme Π consists of the follow-
ing four probabilistic polynomial-time (PPT) algorithms.

– Setup(1n): On an unary string input 1n where n is a security parameter, it
produces the public-private key pair (pk, sk).

– Encrypt(pk, X): Taking the public key pk and the attribute vector X , it
outputs the ciphertext C.

– GenTK(pk, sk, V, t): The token generation algorithm takes the public key pk,
private key sk, outputs the token TK for the vector V and threshold t.

– Test(pk, TK, C): Given the ciphertext C, the token TK, and the public key
pk, it outputs “1” if the hamming distance between the vector X associated
with C and the vector V associated with TK is equal to t (is less than or
equal to t for the inequality version); “0” otherwise.

2.2 Security models

We define MR and MC security in the Selective-ID [12, 10, 24, 19] model as fol-
lows.

Definition 1. (Selective-ID secure in the match-concealing model) An anony-
mous fuzzy identity-based encryption scheme Π = (Setup, Encrypt, GenTK, Test)
is MC secure if for all probabilistic polynomial-time Turing machine (adversary)
A, the advantage of A in the following game is negligible.

Setup: Adversary A(1n) outputs two possible equal-length vectors X0 and X1 to
challenger C. The challenger C takes a security parameter n and runs Setup to
generate pk and sk. C sends pk to A.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, Xb) to adversary A.
Phase 1: Adversary A may adaptively request polynomially bounded number of
tokens (“TK”) for any (Vi, ti), with the restriction that ti = HammingDist(Vi, Xj)
for both j = 0, 1 or ti �= HammingDist(Vi, Xj) for both j = 0, 1 (for inequality
threshold, ti < HammingDist(Vi, Xj) for both j = 0, 1 or ti ≥ HammingDist(Vi,
Xj) for both j = 0, 1).
Guess: The adversary A outputs a guess bit b′. The advantage AdvMC

Π,A(n) of A
is defined as |Pr[b′ = b]− 1

2 |.
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Recall that the only difference between MC and MR security is as follows. MC
security requires that adversary A cannot gain more information on attribute X
than the value of predicate f(X) even when f(X) = 1. MR security requires this
only when f(X) = 0. In a security definition, the above difference is formalized
as given X0 and X1, MR security does not allow adversary A to request tokens
from the challenger for predicate f such that f(X0) = f(X1) = 1. While in MC
security, adversary A can freely request tokens no matter f(X0) = f(X1) = 0
or f(X0) = f(X1) = 1.

Definition 2. (Selective-ID secure in the match-revealing model) An anony-
mous fuzzy identity-based encryption scheme Π = (Setup, Encrypt, GenTK, Test)
is MR secure if for all probabilistic polynomial-time Turing machine (adversary)
A, the advantage of A in the following game is negligible.

Setup: Adversary A(1n) outputs two possible equal-length vectors X0 and X1.
The challenger C takes a security parameter n and runs Setup to generate pk
and sk.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, Xb) to adversary A.
Phase 1: Adversary A may adaptively request polynomially bounded number of
tokens (“TK”) for any (Vi, ti) with the restriction that ti �= HammingDist(Vi, Xj)
for both j = 0, 1 (for inequality threshold, ti < HammingDist(Vi, Xj) for both
j = 0, 1).
Guess: The adversary A outputs a guess bit b′. The advantage AdvMR

Π,A(n) of A
is defined as |Pr[b′ = b]− 1

2 |.

2.3 The Hard Problem Assumption

The hard problem used in this paper is introduced by [19] and has been shown
to “hold in generic bilinear groups of composite order N = pqr as long as finding
a non-trivial factor of N is hard”.

Let G be a group generator which takes security parameter n as input and
(randomly) outputs (p, q, r, G, GT , e), where e : G × G → GT is a bilinear map
which can be computed efficiently. We call the group G bilinear group. G and
GT are cyclic and share the same composite order N = pqr where p, q and r are
three large primes. We also denote Gp, Gq and Gr are the subgroups of G with
order of p, q and r separately. Since N = pqr where p, q and r are primes, Gp,
Gq and Gr must exist and are cyclic. We define Assumption 1 as follows.

Definition 3. We say that G satisfies “Assumption 1” if for any probabilistic
polynomial-time Turing machine A, the advantage of A, |Pr[A(Z̄, T1 = gb2s

p R3) =
1]− Pr[A(Z̄, T2 = gb2s

p Q3R3) = 1]|, is negligible in security parameter n, where
Z̄ is defined as:

(p, q, r, G, GT , e) $← G(1n), N = pqr, gp
$← Gp, gq

$← Gq, gr
$← Gr

Q1, Q2, Q3
$← Gq, R1, R2, R3

$← Gr, a, b, s
$← Zp and outputs

Z̄ = {gp, gr, gqR1, hp = gb
p, kp = gb2

p , ga
pgq, g

ab
p Q1, g

s
p, g

bs
p Q2R2}
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A is also given (N, G, GT , e).

3 Scheme for Equality Threshold

In this section, we describe our scheme for handling the equality threshold ver-
sion of the hamming distance predicate. Recall that both the target attribute V
and the threshold t will only be known when the user wants to obtain a token
from the owner and can vary for different users. Therefore, we need to produce
ciphertext based on attribute X ; a token based on V and t even after X is
encrypted. The Test() needs to combine ciphertext and token together to com-
pute hamming distance HammingDist(X, V ). To the best of our knowledge, we
are aware that only bilinear map can provide such ability while not too pow-
erful to break the security. Intuitively, given ga and gb, bilinear map combines
a and b by computing e(ga, gb) = e(g, g)ab. More specifically, if we encrypt at-
tribute X as ciphertext C = gf(X) and generate token TK = gy(V,t) for target
attribute V and threshold t, by bilinear map, we can construct Test(C, TK)
as e(C, TK) = e(gf(X), gy(V,t)) = e(g, g)f(X)·y(V,t). If we can find f(X) and
y(V, t) such that f(X)y(V, t) = HammingDist(X, V ), Test(C, TK) will func-
tion correctly. More generally, f(X) and y(V, t) would output a vector rather
than a single number. This is because given two vector (ga1 , ..., gai , ..., gam) and
(gb1 , ..., gbi , ..., gbm), we would combine a = (a1, ..., am) and b = (b1, ..., bm) by
computing

∏m
i=1 e(gai , gbi) = e(g, g)

∑m
i=1 ai,bi = e(g, g)a·b where a ·b denotes the

inner product [19, 7] of a and b.
The core step is to represent the hamming distance (see the following lemma,

whose proof is in Appendix D) as an inner product of a·b = f(X)·y(V, t) so that
the attribute of the data item X and the target attribute V can be encrypted
separately into the ciphertext and token.

Lemma 1. Given two bit vectors X and V of equal length m, HammingDist(X, V )
equals

∑m
i=1 xi(1 − 2vi) + 1×∑m

i=1 vi, where X = x1 . . . xm and V = v1 . . . vm.

Encryption scheme in [19] (see Appendix B) allows us generating a ciphertext
C based on a = (a1, ..., an) and a token TK based on b = (b1, ..., bn) such
that given C and TK, we can compute e(g, g)s[

∑n
i=1 aibi], where s is a random

number, which gives 1GT only when the inner product
∑n

i=1 aibi = 0, or a
random number otherwise. [19] is MC secure for above inner product predicate
which allows us devising encryption schemes based on inner product expression
which will be also MC secure. To evaluating whether HammingDist(X, V ) = t,
according to (11), we can check whether e(g, g)s[

∑
xi(1−2vi)+1×(

∑
vi−t)] equals

1GT or not. Equivalently, we construct f(X) = a = (x1, ..., xm, 1) and y(V, t) =
b = (1− 2v1, ..., 1− 2vm,

∑
vi − t). The details of the scheme are as follows.

– Setup(1n). It first runs G(1n) to obtain (p, q, r, G, GT , e). Then, it ran-

domly selects gp
$← Gp, gq

$← Gq and gr
$← Gr. It also randomly selects

{h1,i, h2,i}i∈[1,m], h3 and h4 from Gp, and then randomly selects R, {R1,i, R2,i}i∈[1,m],
R3 and R4 from Gr. It outputs
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pk = {gp, gr, Q = gqR, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i∈[1,m],
H3 = h3R3, H4 = h4R4}

and

sk = {p, q, r, gq, [h1,i, h2,i]i∈[1,m], h3, h4}

– Encrypt(pk, X = x1...xi...xm). The encryption algorithm first randomly se-
lects s, α, β from ZN and {R′

1,i, R
′
2,i}i∈[1,m], R

′
3, R

′
4 from Gr. Then, it outputs

the ciphertext C:

{C0 = gs
p, [C1,i = Hs

1,iQ
αxiR′

1,i, C2,i = Hs
2,iQ

βxiR′
2,i]i∈[1,m],

C3 = Hs
3QαR′

3, C4 = Hs
4QβR′

4}

– GenTK(pk, sk, V = v1...vi...vm, t). It randomly selects {r1,i, r2,i}i∈[1,m], r3, r4

and f1, f2 from ZN . Then, it randomly selects Q′′ and R′′ from Gq and Gr

respectively. It outputs the token TK:

{K0 = Q′′R′′h−r3
3 h−r4

4

∏m
i=1 h

−r1,i

1,i h
−r2,i

2,i ,

[K1,i = g
r1,i
p g

f1(1−2vi)
q , K2,i = g

r2,i
p g

f2(1−2vi)
q ]i∈[1,m],

K3 = gr3
p g

f1(
∑

vi−t)
q , K4 = gr4

p g
f2(

∑
vi−t)

q }

– Test(pk, TK, C). It outputs 1 if r = 1GT and 0 otherwise, where r =
e(C3, K3)e(C4, K4)e(C0, K0)

∏m
i=1 e(C1,i, K1,i)e(C2,i, K2,i).

From above scheme, it is easily shown that the sizes of both ciphertext and
token are O(m).

Correctness analysis: Our construction is based on Lemma 1 to express
the hamming distance as an inner product and then uses the inner-product
encryption in [19], so the correctness can be guaranteed by the correctness of
the inner-product encryption. The details of the correctness proof can be found
in Appendix E.

Security analysis: Our encryption scheme can be proved to be MC se-
cure. The proof is based on a reduction as follows. Assume that there exits an
adversary A1 that can win the MC game of our scheme with non-negligible
advantage, we can use A1 as a subroutine to construct an adversary A2 that
can win the MC game of the scheme in [19] with non-negligible advantage:
When A1 outputs two vectors X0 and X1 to be challenged, A2 forwards (X0, 1)
and (X1, 1) to challenger. When A1 asks for token query for (V, t) to A2, since
HammingDist(X, V ) = t (or �= t) is corresponding to

∑
xi(1− 2vi)+1×(

∑
vi−

t) = 0 (or �= 0), A2 is able to answer the query by asking challenger token query
for (1− 2v1, ..., 1− 2vm,

∑
vi − t). We omit the proof in this paper.
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4 Scheme for Inequality Threshold

There is a generic solution for solving the case of inequality threshold by using
the idea from [10] which can be shown to be MC secure. The details of this
generic solution are given in Appendix A. The ciphertext of this solution is of
size O(m2m) although the token size is constant which is not practical. In the
following, we provide two practical schemes to handle the inequality threshold
version.

4.1 Scheme with known tmax

If we can know the maximum value for the threshold t, tmax, in advance, we
can have a scheme which is better than the generic solution. The sizes of the
ciphertext can be reduced to O(

∑tmax+1
i=0

(
m
i

)
). In some applications, tmax << m

and is a constant. In that case, the size becomes O(mtmax). The restriction on
setting tmax seems to be quite stringent. At the end of this section, we show
how one can update the ciphertext if the user decides to increase tmax without
computing ciphertext from scratch. We first present the scheme for known tmax.

The idea behind our construction is based on the observation that hamming
distance H ≤ t if and only if H(H − 1)...(H − t) = 0. Then, if we evaluate
e(g, g)sH(H−1)...(H−t) as Test() result where “s” is a random number, when
H ≤ t, Test() will be 1GT (no information is leaked rather than the fact that
H ≤ t); when H > t, H(H−1)...(H−t) �= 0, Test() will output a random number
(still no information is leaked rather than the fact H > t since Test() �= 1GT

computationally). Note that although evaluating H(H−1)...(H−t) seems trivial
in performance, it helps to ensure no information can be leaked which is required
in MC security level.

Since the formula H(H−1)...(H−t) where H =
∑

xi(1− 2vi)+
∑

vi contains
both information from ciphertext (i.e. knowledge of xi) and token (i.e. knowledge
of vi and t) which cannot be available at the same time, we need to split the
formula to these two parts (ciphertext and token). Recall that as we discussed
in Section 3, we can split the formula to f(X) and y(V, t) whose inner product
f(X) ·y(V, t) provides the result for H(H−1) · ... · (H − t). The following lemma
(proved in Appendix C) expands H(H−1) · ... · (H− t) so that we can find f(X)
and y(V, t). We let

H(H − 1) · ... · (H − t) = at+1H
t+1 + atH

t + ... + a1H (1)

where we assume ak (k = 1, ..., t + 1) can be efficiently determined.

Lemma 2. Given attribute X = (x1, ..., xm), target attribute V = (v1, ..., vm)
and threshold t, we denote H as the hamming distance HammingDist(X, V )
and define a0 = 0 and bj (j = 0, ..., t + 1) as

bj = at+1

(
t + 1

t + 1− j

)
(
∑

vi)t+1−j + at

(
t

t− j

)
(
∑

vi)t−j + ... + aj

(
j

0

)
(2)
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Then, we have H(H − 1) · ... · (H − t)

= bt+1(
∑

k1+...+km=t+1

(t + 1)!
k1! · ... · km!

(1− 2v1)k1 · ... · (1− 2vm)kmxk1
1 · ... · xkm

m )

+ ... + bj(
∑

k1+...+km=j

j!
k1! · ... · km!

(1− 2v1)k1 · ... · (1− 2vm)kmxk1
1 · ... · xkm

m )

+ ... + b0 (3)

Now, H(H − 1) · ... · (H − t) can be represented as inner product of f(X) ·
y(V, t) =

∑
fi(X) · yi(V, t). This is the key idea to our construction for inequality

threshold. However, notice that xi ∈ {0, 1}, we would future reduce the number
of items in equation (3) based on the observation that xk1

1 · ... · xkm
m =

∏
{i:ki>0}

xi

if xi ∈ {0, 1}. Then, equation (3) can be refined as:

H(H − 1) · ... · (H − t)
= b0

+
∑

1≤j≤m

[
∑

1≤k1≤t+1

bk1(1− 2vj)k1 ]xj

+
∑

1≤j1<j2≤m

[
∑

k1+k2≤t+1;ki≥1

(k1 + k2)!
k1!k2!

bk1+k2(1− 2vj1)
k1(1 − 2vj2)

k2 ]xj1xj2

+ ...

+
∑

1≤j1<...<jl≤m

[
∑

k1+...+kl≤t+1;ki≥1

(k1 + ... + kl)!
k1!...kl!

bk1+...+kl
(1 − 2vj1)

k1 ...(1− 2jl
)kl ]xj1 ...xjl

+ ...

+
∑

1≤j1<...<jt+1≤m

[(t + 1)!bt+1(1− 2vj1)...(1 − 2vjt+1)]xj1 ...xjt+1 (4)

= B0

+ B1x1 + B2x2 + ... + Bmxm

+ Bm+1x1x2 + ... + Bm+(m
2 )xm−1xm

+ ...

+ Bm+(m
2 )+...+(m

t )+1x1x2...xt+1 + ... + Bm+(m
2 )+...+( m

t+1)xm−t...xm

Where Bi is defined as above. The number of items in equation (4) is 1 +(
m
1

)
+

(
m
2

)
+ ... +

(
m

t+1

)
=

∑t+1
i=0

(
m
i

)
. We now describe a construction based on

[19] (see Appendix B) and equation (4) whose ciphertext and token size are both
O(

∑tmax+1
i=0

(
m
i

)
).

Recall (Setup, Enc, GenKey, Dec) in [19] can support n-dimension vectors a

and b such that C
$← Enc(a) and TK

$← GenKey(b) where Dec(C, TK) = 1 if and
only if the inner product a ·b = 0. In our construction, we let n be

∑tmax+1
i=0

(
m
i

)
.

Encryption algorithm Encrypt(X = x1, ..., xm) in our construction calls Enc()
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with input vector:

a = (1, x1, ..., xm, x1x2, ..., xm−1xm, ..., xm−tmax · ... · xm)3 (5)

Token for vi and t is generated by calling GenKey() with input vector:

b = (B0, B1, ..., Bm, Bm+1, ..., Bm+(m
2 ), ..., Bm+...+(m

t )+1, ..., Bm+...+( m
t+1), 0..., 0)

(6)
Note that a and b are constructed according to equation (4). Therefore, accord-
ing to equation (4), the inner product of a · b = H(H − 1) · ... · (H − t).

This construction has ciphertext and token both of size O(n) = O(
∑tmax+1

i=0

(
m
i

)
),

however, some items in the token are in fact “0” since t may be less than tmax;
more specifically, H(H − 1)...(H − t) is t + 1 degree and items in a whose de-
gree larger than t + 1 (i.e. x1x2...xt+2 ... xm−tmax ...xm) will have coefficient “0”
in b (see equation (6)). This allows us further reduce the token size. To do so,
we devise an encryption scheme slightly different from [19] such that a is still
n-dimensional while b can be any n′-dimensional (n′ ≤ n) and decryption will
output “1” if and only if the inner product

∑n′

i=1 aibi = 0. We describe this
construction as follows:

– Setup(1n). It first runs G(1n) to obtain (p, q, r, G, GT , e). Then, it randomly
selects gp from Gp, gq from Gq and gr from Gr. It also randomly selects
{h1,i, h2,i}i∈[1,lmax] from Gp, and then randomly selects R, {R1,i, R2,i}i∈[1,lmax]

from Gr. It outputs

pk = {gp, gr, Q = gqR, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i∈[1,lmax]}
and

sk = {p, q, r, gq, [h1,i, h2,i]i∈[1,lmax]}

– Encrypt(pk, X = x1...xi...xlmax). The encryption algorithm first randomly
selects s, α, β from ZN and {R′

1,i, R
′
2,i}i∈[1,lmax] from Gr. Then, it outputs

ciphertext C:

{C0 = gs
p, [C1,i = Hs

1,iQ
αxiR′

1,i, C2,i = Hs
2,iQ

βxiR′
2,i]i∈[1,lmax]}

– GenTK(pk, sk, V = v1...vi...vt). Note that t ≤ lmax. It randomly selects
{r1,i, r2,i}i∈[1,t] and f1, f2 from ZN . Then, it randomly selects Q′′ and R′′

from Gq and Gr respectively. It outputs token TK:

3 Note that although there exists x1, x2 and x1x2 in a, given ciphertext for x1 and
x2, we cannot reuse x1 and x2 to compute x1x2. This is because bilinear map is
able to do only one multiplication (on encrypted data), however, we have used this
ability to combine ciphertext and token, therefore, such redundancy in a seems to
be necessary.
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⎧⎪⎨
⎪⎩

K0 = Q′′R′′ ∏ t
i=1 h

−r1,i

1,i h
−r2,i

2,i[
K1,i = g

r1,i
p gf1vi

q , K2,i = g
r2,i
p gf2vi

q

]
i∈ [1,t]

⎫⎪⎬
⎪⎭

– Test(pk, TK, C). It computes r = e(C0, K0)
∏ t

i=1 e(C1,i, K1,i)e(C2,i, K2,i).
If r = 1GT , it will output 1; otherwise it outputs 0.

Applying the above encryption scheme instead of the original scheme of [19]
to (5) and (6), we obtain the final construction. Note that the above scheme also
makes our security analysis of the final construction much easier (see Appendix
F). The final construction Π1 is described as follows.

– Setup(1n): It first runs G(1n) to obtain (p, q, r, G, GT , e). Then, it randomly
selects gp from Gp, gq from Gq and gr from Gr. It also randomly selects
{h1,l,i, h2,l,i}l∈[1,tmax+1],i∈[1,(m

l )] from Gp. Then it randomly selects h3, h4

from Gp. It also randomly selects R, {R1,l,i, R2,l,i}l∈[1,tmax+1],i∈[1,(m
l )], R3, R4

from Gr. It outputs

pk =

⎧⎨
⎩

gp, gr, Q = gqR,
[H1,l,i = h1,l,iR1,l,i, H2,l,i = h2,l,iR2,l,i]l∈[1,tmax+1],i∈[1,(m

l )] ,
H3 = h3R3, H4 = h4R4

⎫⎬
⎭

and

sk =

⎧⎨
⎩

p, q, r, gq,
[h1,l,i, h2,l,i]l∈[1,tmax+1],i∈[1,(m

l )] ,
h3, h4

⎫⎬
⎭

– Encrypt(pk, X = x1...xm): Encryption algorithm first randomly selects s, α, β
from ZN and {R′

1,l,i, R
′
2,l,i}l∈[1,tmax+1],i∈[1,(m

l )], R
′
3, R

′
4 from Gr. Then it out-

puts ciphertext C:

⎧⎪⎨
⎪⎩

C0 = gs
p,[

C1,l,i = Hs
1,l,iQ

αxj1 ...xjl R′
1,l,i, C2,l,i = Hs

2,l,iQ
βxj1 ...xjl R′

2,l,i

]
l∈{1...tmax+1};1≤j1<...<jl≤m

,

C3 = Hs
3QαR′

3, C4 = Hs
4QβR′

4

⎫⎪⎬
⎪⎭

– GenTK(pk, sk, V = v1...vm, t): It randomly selects {r1,l,i, r2,l,i}l∈[1,t+1],i∈[1,(m
l )], r3, r4

and f1, f2 from ZN . Then, it randomly selects Q′′ and R′′ from Gq and Gr

respectively. It outputs token TK:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K0 = Q′′R′′h−r3
3 h−r4

4

∏t+1
l=1

∏(m
l )

i=1 h
−r1,l,i

1,l,i h
−r2,l,i

2,l,i⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1,1,1 = g
r1,1,1
p gf1B1

q , K2,1,1 = g
r2,1,1
p gf2B1

q

... ...
K1,1,m = g

r1,1,m
p gf1Bm

q , K2,1,m = g
r2,1,m
p gf2Bm

q

K1,2,1 = g
r1,2,1
p g

f1Bm+1
q , K2,2,1 = g

r2,2,1
p g

f2Bm+1
q

... ...

K1,2,(m
2 ) = g

r
1,2,(m

2 )
p g

f1B
m+(m

2 )
q , K2,2,(m

2 ) = g
r
2,2,(m

2 )
p g

f2B
m+(m

2 )
q

... ...

K1,t+1,1 = g
r1,t+1,1
p g

f1B
m+(m

2 )+...+(m
t )+1

q , K2,t+1,1 = g
r2,t+1,1
p g

f2B
m+(m

2 )+...+(m
t )+1

q

... ...

K1,t+1,( m
t+1) = g

r
1,t+1,( m

t+1)
p g

f1B
m+...+( m

t+1)
q , K2,t+1,( m

t+1) = g
r
2,t+1,( m

t+1)
p g

f2B
m+...+( m

t+1)
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K3 = gr3
p gf1B0

q , K4 = gr4
p gf2B0

q

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

– Test(pk, sk, TK, C) : It outputs 1 if r = 1GT and 0 otherwise, where r =

e(K0, C0)e(K3, C3)e(K4, C4)
∏t+1

l=1

∏(m
l )

i=1 e(K1,l,i, C1,l,i)e(K2,l,i, C2,l,i).

The size of our ciphertext is still O(
∑tmax+1

i=0

(
m
i

)
) but the size of token is now

O(
∑t+1

i=0

(
m
i

)
) for threshold t. The correctness follows from the fact tht r can be

shown to be e(gq, gq)(αf1+βf2)H(H−1)(H−2)...(H−t). The security of the scheme is
stated in Theorem 1 and proved in appendix F.

Theorem 1. Our construction Π1 in Section 4.1 is Selective-ID secure in the
math-concealing model under Assumption 1.

Lastly, to show that it is feasible to compute the coefficients ak (k = 1, ..., t+
1) in (1), we have implemented an algorithm to calculate ak. In fact, it can
automatically calculate each non-zero elements of vector b in (6). It is written
in C++. For example, with input m = 100 and t = 3, it took about 16 seconds
to calculate all elements on an Intel Core 2 Due E6750 2.66GHz CPU platform.

Increasing tmax: It may be possible that the user wants to increase tmax to
T ′. The following shows the ideal of how to update the ciphertext without pro-
ducing ciphertext from scratch, provided that the value α, β and s generated in
Encrypt() procedure are kept by that user. The main ideal is that, when maxi-
mum threshold updates from tmax to T ′, the corresponding vector a in (5) will
also need to be updated as:

a′ = (a, x1 · ... · xtmax+2, ..., xm−T ′ · ... · xm) (7)

Recall that when maximum threshold is tmax, a contains all items whose degree
l ≤ tmax +1; now when maximum threshold becomes T ′, a should contain items
whose degree l ≤ T ′ + 1. Then, we need to produce those items whose degree
is within tmax + 2 to T ′ + 1, namely xj1 ...xjl

where tmax + 2 ≤ l ≤ T ′ + 1 and
1 ≤ j1 < ... < jl ≤ m in (7). If we can easily generate ciphertext corresponding
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to those items, we will update the ciphertext without from scratch. This can
be done by calculating C1,i = Hs

1,iQ
αa′′

i R1,i and C2,i = Hs
2,iQ

βa′′
i R2,i for i =

1, ..., k, given α, β and s. Where we denote vector a′′ = (a′′
1 , ..., a′′

k) such that
a′ = (a, a′′).

The above update procedure can be shown to be MC-secure. Intuitively, when
x1, ..., xm in a are determined, all items in a (also in a′) have been determined
since they are the multiplication of two or more items in {x1, ..., xm}. For any
possible tmax ≥ 0, a (and therefore a′) contains (x1, ..., xm) for sure. That means
all terms including the one to be generated due to the increase in tmax has been
fixed although they are not computed yet. In other words, an adaptive attack will
not work in our construction since it has no way to adaptively modify how the
missing items are generated no matter what T ′ it provides. This is the intuitive
reason that if the scheme for tmax is (selective) MC secure, then the update
procedure is still (selective) MC secure. The formal proof and the details of how
to perform this update can be found in Appendix H.

Note that in the worst case, tmax = m, the size of the ciphertext (and token)
becomes O(2m). Although it is better than O(m2m) for the solution in Appendix
A, it is not practical. So, this scheme should be used when tmax is small.

4.2 Scheme for Inequality Threshold with MR security

In this section, we consider another practical situation in which only a lower
security level (the MR security) is required. Recall that the only difference be-
tween MC and MR security is that MR security does not require attribute X
to be hidden after Test() outputs “1”. MR security is still reasonable in many
real applications. For example, as we mentioned before, the attribute X may be
part of the data item M . When Test(X) = 1, we will properly decrypt M and
see the entire X . It is meaningless to require MC security.

In fact, MR security does not define or limit how much information on at-
tribute X can be leaked if Test(X) = 1. That is, we may leak the entire X in
an encryption scheme which is still MR secure. This is the key to optimize the
performance of such a scheme. We first show a general idea of how to make use
of this property. Intuitively, we can decompose the predicate f (and therefore
Test(X)) into T cases such that there exist MC-secure (or at least MR-secure)
schemes for each case. Then, we can construct an MR secure scheme by encrypt-
ing data item M under each encryption scheme for each case. When deriving
token, our scheme will generate decryption keys corresponding to those T differ-
ent cases. If at least one of the cases decrypts successfully, Test() outputs “1”.
Otherwise, Test() outputs “0”.

The above scheme can be shown to be MR secure. Since the scheme for each
case is assumed to be at least MR secure, if Test(X) = 0, none of the scheme
will leak any information about X except that X does not satisfy the query. In
other words, given X0 and X1, it is not way to tell the difference which achieves
MR security. On the other hand, if Test(X) = 1, how much information can be
deduced depends on how we decompose the cases and what scheme is used in
each case. Similarly, for performance, it depends on how we decompose the cases
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(i.e., the number of cases) and the decryption cost for each case. For example, if
Test() is equality threshold t testing of hamming distance, the following shows
one approach (not a good approach) to decompose it into cases. There will be

(
m
t

)
different X ∈ {0, 1}m satisfying HammingDist(X, V ) = t. We can decompose
the equality threshold testing into

(
m
t

)
cases (We assume they corresponding

to X1, ..., X(m
t ) in {0, 1}m) that each case is testing whether X is the same

as Xi, which can be done by Anonymous Identity-Based Encryption. Because
Anonymous Identity-Based Encryption is MR (and also MC) secure, this scheme
is MR secure. The scheme has an O(

(
m
t

) × 1) = O(
(

m
t

)
) decryption cost. And

when Test() = 1, people can know exactly what X is.
Focusing on our construction in this section, we can simply decompose the

predicate f of testing whether HammingDist(X, V ) ≤ t to t+1 cases that
whether HammingDist(X, V ) = 0, whether HammingDist(X, V ) = 1, ..., and
whether HammingDist(X, V ) = t. Such scheme has decryption complexity of
O((t + 1)×m) if we use the (MC-secure) construction in Section 3.

Denote the scheme in Section 3 as Π3 = (Setup′, Encrypt′, GenTK′, Test′), we
describe our scheme, Π4 = (Setup = Setup′, Encrypt = Encrypt′, GenTK′, Test′),
with MR security as follows.

– GenTK(pk, sk, V ) : For each j ∈ {0, ..., t}, it runs TKj = GenTK′(pk, sk, V, j)
and returns TK = (TK0, ..., TKt).

– Test(pk, TK, C) : For each TKj in TK, it runs Test′(pk, TKj, C) and checks
if any of the results for any j is 1GT , it returns 1, otherwise it returns 0
indicating that HammingDist(X, V ) > t.

The size of the ciphertext in the above scheme is O(m) and the size of the
token for threshold t is O((t+1)m).The correctness of the scheme follows directly
from the correctness of the scheme in Section 3. The security of the scheme is
given in the following theorem. The formal proof can be found in Appendix
G based on a simple reduction (its intuitive ideal has been discussed in the
beginning of this section). Recall that the scheme in section 3 is MC secure
under Assumption 1.

Theorem 2. Scheme in Section 4.2 is selective-ID secure in match-revealing
model if scheme in Section 3 is selective-ID secure in match-concealing model.

5 Conclusion

In this paper, we investigated the problem of predicate encryption with attribute
protection and focus on a hamming distance similarity comparison predicate. We
consider both the equality and inequality versions on a user-specific threshold
t. For the equality version, we provide a MC-secure scheme with both the sizes
of ciphertext and token equal to O(m) where m is the length of the attribute
vector. For the inequality version, we provide two practical schemes, one works
for the situation when the maximum value of t (tmax) is known and is MC secure.
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The other works for applications which require only MR security. The schemes
provided in the paper should be applicable to real applications thus allowing
the application communities to perform more useful computation on encrypted
data.

The sizes of the ciphertext in our MC-secure scheme for the inequality thresh-
old is

∑tmax+1
i=0

(
m
i

)
. We leave it as an open problem whether it could be improved

to O((t + 1)m) as in the MR-secure scheme.
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A A generic construction from [10]

The main idea of this construction is that we generate a ciphertext (C0, C1, ...Ctmax)
for each possible V ∈ {0, 1}m where we assume that the vector size is m. For
each j ∈ Ztmax+1, if HammingDist(X, V ) ≤ j, then Cj will be an encrypted
message for “true” based on an IND-CPA secure encryption scheme; otherwise,
Cj will be an encrypted message for “false”. When we Test() for a certain (V, t),
we can simply find the ciphertext for V and decrypt the t-th element Ct in that
ciphertext. If HammingDist(X, V ) ≤ t, the decryption result should be “true”.
More specifically, we define the encryption scheme as follows. Let (G, E, D) be an
IND-CPA secure encryption scheme.

– Setup(1n) : Run G(1n) to generate (pkl,j , skl,j){l∈{0,1}m,j∈Ztmax+1} for (tmax+
1)2m times. Return the public-key pk as {pkl,j}{l∈{0,1}m,j∈Ztmax+1} and the
secret key sk as {skl,j}{l∈{0,1}m,j∈Ztmax+1}.

– Encrypt(pk, X = x1...xm) : For each l ∈ {0, 1}m, return (C0, C1, ..., Ctmax)l

where

Cj =
{
Epkl,j

(“true′′) if HammingDist(X, l) ≤ j;
Epkl,j

(“false′′) otherwise.

– GenTK(pk, sk, V, t): Return skV,t as the token.

– Test(pk, TK, C): It first finds (C0, C1, ..., Cm)V and computes r = DTK(Ct).
If r is equal to “true” then return 1; otherwise return 0.
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The security of the above solution comes from the IND-CPA secure encryp-
tion scheme we used 4, see appendix A of [10] for more details. We can rearrange
the ciphertexts so that Cl,j in our solution is corresponding to C(tmax+1)l+j in
[10]’s proof and the rest of the proof is the same. We should also note that
(tmax + 1)2m should be poly(n) in security parameter n because all algorithms
given above should be polynomial-time.

B Predicate-only encryption in [19]

[19] proposes a predicate encryption scheme for inner product predicate. Below
we describe its predicate-only version used in this paper for completeness. The
scheme consists of (Setup, Enc, GenKey, Dec):

– Setup(1n): The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , e).
Next, it computes gp, gq and gr as generators of Gp, Gq and Gr, respectively.
It then chooses R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for
i = 1 to n, and R0 ∈ Gr uniformly at random. The public parameters include
(N = pqr, G, GT , e) along with:

PK = (gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i · R2,i}ni=1).

The master secret key SK is (p, q, r, gq, {h1,i, h2,i}ni=1).

– Enc(PK, x): Let x = (x1, ..., xn) where xi ∈ ZN . This algorithm chooses
random s, α, β ∈ ZN and R3,i, R4,i ∈ Gr (i = 1, ..., n). It outputs the cipher-
text

C = (C0 = gs
p, {C1,i = Hs

1,i ·Qα·xi ·R3,i, C2,i = Hs
2,i ·QβxiR4,i}ni=1).

– GenKey(SK, v): Let v = (v1, ..., vn), and recall SK = (p, q, r, gq, {h1,i, h2,i}ni=1).
This algorithm chooses random r1,i, r2,i ∈ Zp for i = 1 to n, random R5 ∈ Gr,
random f1, f2 ∈ Zq and random Q6 ∈ Gq. It then outputs

SKv = (K = R5 ·Q6 ·
∏n

i=1 h
−r1,i

1,i h
−r2,i

2,i , {K1,i = g
r1,i
p gf1·vi

q , K2,i =

g
r2,ig

f2vi
q

p }ni=1).

– Dec(SKv, C): Let C = (C0, {C1,i, C2,i}ni=1) and SKv = (K, K1,i, K2,i
n
i=1) be

as above. The decryption algorithm outputs 1 if and only if

e(C0, K) ·∏n
i=1 e(C1,i, K1,i) · e(C2,i, K2,i)

?= 1.

4 The main idea is that we cannot distinguish E(pki, “true”) from E(pki, “false”) in
the case of HammingDist(X0, V ) ≤ t but HammingDist(X1, V ) > t.



www.manaraa.com

Anonymous Fuzzy Identity-based Encryption for Similarity Search 19

C Proof of Lemma 2

By Binomial theorem, we have

Hk = (
∑

(xi(1− 2vi) + vi))k = (
∑

xi(1− 2vi) +
∑

vi)k

= (
∑

xi(1− 2vi))k + ... +
(

k

j

)
(
∑

xi(1 − 2vi))k−j(
∑

vi)j + (8)

... + (
∑

vi)k

If we substitute equation (8) for each Hk (k = 1, ..., t + 1) in (1), we have

H(H − 1) · .... · (H − t)

= at+1[(
∑

xi(1 − 2vi))t+1 +
(

t + 1
1

)
(
∑

vi)(
∑

xi(1− 2vi))t + ... + (
∑

vi)t+1]

+ ...

+ a1[
∑

xi(1− 2vi) +
∑

vi]

= bt+1(
∑

xi(1− 2vi))t+1 + bt(
∑

xi(1− 2vi))t + ... + b0 (9)

Focusing on each (
∑

xi(1 − 2vi))l = (x1(1 − 2v1) + ... + xm(1 − 2vm))l (l =
1, ..., t + 1) in (9), by applying Multinomial theorem, we have

(
∑

xi(1− 2vi))l =
∑

k1+...+km=l

l!
k1!...km!

(1− 2v1)k1 · ... · (1 − 2vm)kmxk1
1 · ... · xkm

m

(10)
We substitute (10) in equation (9), which completes the proof.

D Proof of Lemma 1

Proof. Since X = x1, ..., vi, ..., xm and V = v1, ..., vi, ..., vm are bit vectors, their
hamming distance are equal to the summation of exclusive-or (“⊕”) at each
position i. Keep in mind that we want to represent hamming distance in inner
product form and therefore we use the formula that a ⊕ b = a + b − 2ab =
a(1 − 2b) + 1 × b if a, b ∈ {0, 1}. Since the number of items will heavily impact
on sizes of ciphertext, token and decryption cost, we also want the number can
be as small as possible. This motivates us to represent

∑m
i=1 [xi(1− 2vi) + vi] =∑m

i=1 xi(1 − 2vi) + 1×∑m
i=1 vi. The details are as follows.

HammingDist(X, V ) =
m∑

i=1

xi ⊕ vi =
m∑

i=1

(xi + vi − 2xivi)

=
m∑

i=1

(xi(1− 2vi) + vi)

=
m∑

i=1

xi(1− 2vi) + 1× (
m∑

i=1

vi) (11)
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E Correctness analysis of the scheme for equality
threshold

One key property behind the scheme in [19] is that if two elements a and b come
from two different (prime) subgroups of G, then e(a, b) = 1GT . To simplify our
correctness analysis, since the token of encryption scheme in Section 3 only in-
volves elements from Gp and Gq, we investigate the value of r = Test(pk, TK, C)
in subgroup Gp and Gq respectively only.

rq =
e(gα

q , g
−f1(

∑
vi−t)

q )e(gβ
q , g

−f2(
∑

vi−t)
q ) · 1 ·∏ e(gαxi

q , g
f1(1−2vi)
q )e(gβxi

q , g
f2(1−2vi)
q )

= e(gq, gq)(αf1+βf2)(
∑

vi−t+
∑

(1−2vi)xi)

= e(gq, gq)(αf1+βf2)(HammingDist(x1...xi...xm,v1...vi...vm)−t)

and

rp = e(hs
3, g

r3
p )e(hs

4, g
r4
p )e(gs

p, h
−r3
3 )e(gs

p, h
−r4
4 )

∏
e(gs

p, h
−r1,i

1,i )e(gs
p, h

−r2,i

2,i )·∏
e(hs

1,i, g
r1,i
p )e(hs

2,i, g
r2,i
p ) = 1

F Proof of Theorem 1

Definition 4. The encryption scheme Π2 = (Setup, Encrypt, GenTK, Test) de-
fined in Section 4.1 is MC secure if for all probabilistic polynomial-time Turing
machine (adversary) A, the advantage of A in the following game is negligible.

Setup: The adversaryA(1n) outputs two possible equal-length (lmax-length) vec-
tors X0 and X1 to the challenger C. The challenger C takes a security parameter
n and runs Setup to generate pk and sk. C sends pk to A.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, Xb) to adversary A.
Phase 1: The adversary A may adaptively request polynomially bounded num-
bers of tokens (“TK”) for any Vi = vi,1...vi,ti where ti ≤ lmax, subject to the
restriction that 0 =

∑ti

k=1 xj,kvi,k for both j = 1, 0 or 0 �= ∑ti

k=1 xj,kvi,k for both
j = 0, 1.
Guess: The adversary A outputs a guess bit b′. The advantage AdvMC

Π2,A(n) of
A is defined as |Pr[b′ = b]− 1

2 |.
Lemma 3. Our construction Π1 in Section 4.1 is Selective-ID secure in the
math-concealing model if Π2 = (Setup, Encrypt, GenTK, Test) in Section 4.1 is
secure under definition 4.

Proof. This proof is by contradiction. We will show that if there exist Adversary
A1 with non-negligible adversary ε with our construction Π1, then we can con-
struct an Adversary A2 also with non-negligible with scheme Π2 under definition
4.
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Setup: The adversary A2(1n) runs A1(1n). A1 outputs two equal-length vector
X0 = x0,1...x0,k...x0,m and X1 = x1,1...x1,k...x1,m. A1 passes X0 and X1 to A2.
A1 also submits tmax ≤ m to A2.

The adversary A2 calculates X̃j = a in (5):

X̃j = (1, xj,1, ..., xj,m, xj,1xj,2, ..., xj,m−1xj,m, ..., xj,m−tmax · ... · xj,m)

for both j = 0, 1. Then, A2 submits X̃0 and X̃1 to challenger C. Note that
lmax =

∑tmax+1
l=0

(
m
l

)
.

Challenge: The challenger C runs Setup(1n) to generate pk and sk; C sends pk to
adversary A2. A2 rearranges pk into pk′ according to the description of Setup()
in scheme Π1. A2 passes pk′ to A1.

The challenger picks a random bit b ∈ {0, 1}. C computes and returns C∗ $←
Encrypt(pk, X̃b) to A2. Adversary A2 rearranges C∗ and sends it to A1.
Phase 1: The adversary A1 may adaptively request polynomially bounded num-
ber of tokens for any (Vi, ti) subject to the restriction that ti < HammingDist(Vi, Xj)
for both j = 0, 1 or ti ≥ HammingDist(Vi, Xj) for both j = 0, 1. When receiv-
ing valid (V = v1...vm, t), A2 will calculate a t̃ =

∑t+1
l=0

(
m
l

)
-length vector Ṽ =

(at+1(
∑

vi)t+1+...+a1(
∑

vi), ...,
∑

1≤k1+...+kl≤t+1;ki≥1
(k1+...+kl)!

k1!...kl!
bk1+...+kl

(1− 2vs1)k1 ...(1 − 2vsl
)kl ,

..., (t+1)!bt+1(1−2vm−t)(1−2vm−t+1)...(1−2vm)) We note that HammingDist(V, Xj) ≤
t if and only if

∑t̃
k=1 X̃j,kṼk = 0 as we explained in Section 4.1. A2 submits Ṽ

to the challenger C to acquire a token TK. A2 rearranges TK and sends it to
A1.
Guess: A1 outputs a bit b′. And A2 passes b′ to the challenger as its output.

Recall that HammingDist(V, Xj) ≤ t if and only if
∑t̃

k=1 X̃j,kṼk = 0,
therefore valid token requests for Π1 are still valid in Π2. And AdvMC

Π2,A2
(n) =

AdvMC
Π1,A1

(n). That completes our proof.

Lemma 4. Π2 = (Setup, Encrypt, GenTK, Test) in Section 4.1 is secure under
Definition 4 under Assumption 1.

Proof. This proof is quite similar to the proof in [19]. Given two equal-length vec-
tor X = x1...xi...xlmax and Y = y1...yi...ylmax , loosely speaking, we try to prove
(X, X)

c≡ (X, 0)
c≡ (X, Y )

c≡ (0, Y )
c≡ (Y, Y ) in the game defined by Definition 1.

Where 0 stands for a lmax-length vector (0, 0, ..., 0) and
c≡ is “computationally

indistinguishable”.
Let us prove (X, X)

c≡ (X, 0) first. Given {Z̄, T } where T may be equal to
T1 = gb2s

p R3 or T2 = gb2s
p Q3R3, the challenger C answers Setup(1n) as follow:

It randomly selects ω1,i and ω2,i from ZN . Then, it computes h1,i = hxi
p g

ω1,i
p =

g
bxi+ω1,i
p and h2,i = kxi

p g
ω2,i
p = g

b2xi+ω2,i
p for i = 1, ..., lmax. It outputs pk to

adversary A: where R1,i and R2,i are randomly selected from Gr.

pk = {gp, gr, Q = gpR1, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i=1,...,lmax}
The challenging ciphertext C∗ is generated as follow: challenger C first ran-

domly selects R′
1,i and R′

2,i from Gr.
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C = {C0 = gs
p, [C1,i = (gbs

p Q2R2)xi(gs
p)

ω1,iR′
1,i, C2,i =

(T )xi(gs
p)ω2,iR′

2,i]i=1,...,lmax}

We note that C1,i = (gbs
p Q2R2)xi(gs

p)ω1,iR′
1,i = (gbxi+ω1,i

p )sQxi
2 Rxi

2 R′
1,i = hs

1,iQ
αxiRxi

2 R′
1,i.

where we denote Q2 = gα
q . And C2,i = (T )xi(gs

p)ω2,iR′
2,i = (gb2xi+ω2,i

p )sQβxiRxi
3 R′

2,i

= hs
2,iQ

βxiRxi
3 R′

2,i where β = 0 if T = T1 and β is random from ZN if T = T2.
When receiving V = v1...vi...vt from adversary, challenger C generates cor-

responding token as follows: It firstly randomly selects f̃1 and f̃2 from ZN .
It also randomly chooses r′1,i and r′2,i form ZN . Then, it calculates K1,i =

(ga
pgq)f̃1vi(gab

p Q1)−f̃2vig
r′
1,i

p = g
af̃1vi−abf̃2vi+r′

1,i
p gf̃1vi−df̃2vi

q . (We denote Q1 = gd
q .)

We denote r1,i = af̃1vi − abf̃2vi + r′1,i and f1 = f̃1− df̃2.

It also calculates K2,i = (ga
pgq)f̃2vig

r′
2,i

p = g
af̃2vi+r′

2,i
p gf̃2vi

q where we denote
r2,i = af̃2vi + r′2,i and f2 = f̃2.

K0 is calculated by K0 = Q′′R′′ ∏t
i=1 h

−r1,i

1,i h
−r2,i

2,i

= QR
∏t

i=1 g
−(bxi+ω1,i)(af̃1vi−abf̃2vi+r′

1,i)
p g

−(b2xi+ω2,i)(af̃2vi+r′
2,i)

p

= QR
∏t

i=1 g
−(abf̃1xivi−ab2f̃2xivi+br′

1,ixi+af̃1ω1,ivi−abf̃2ω1,ivi+r′
1,iω1,i+ab2f̃2vixi+b2r′

2,ixi+af̃2ω2,ivi+r′
2,iω2,i)

p

= QR
∏t

i=1 g
−a(f̃1ω1,ivi+f̃2ω2,ivi)−ab(f̃1xivi−f̃2ω1,ivi)−b(r′

1,ixi)−b2(r′
2,ixi)−ab2(−f̃2vixi+f̃2vixi)−(r′

1,iω1,i+r′
2,iω2,i)

p

= QR
∏t

i=1 [(ga
pgq)−(f̃1ω1,ivi+f̃2ω2,ivi)· (gab

p Q1)−(f̃1xivi−f̃2ω1,ivi)· h−(r′
1,ixi)

p · k−(r′
2,ixi)

p ·
g
−(r′

1,iω1,i+r′
2,iω2,i)

p ]
Now, let us prove (X, 0)

c≡ (X, Y ). The challenger C answers Setup(1n) as
follows: It first randomly selects ω1,i and ω2,i from ZN . It randomly selects R1,i

and R2,i from Gr Then, it calculates h1,i = hxi
p g

ω1,i
p = g

bxi+ω1,i
p and h2,i =

kyi
p g

ω2,i
p = g

b2yi+ω2,i
p . It outputs pk to adversary:

pk = {gp, gr, Q = gqR1, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i=1...lmax}
The challenging ciphertext C∗ is generated as follows: challenger C first ran-

domly select R′
1,i and R′

2,i from Gr.

C = {C0 = gs
p, [C1,i = (gbs

p Q2R2)xi(gs
p)ω1,iR′

1,i, C2,i =
(T )yi(gs

p)
ω2,iR′

2,i]i=1...lmax}

We note that C1,i = (gbxi+ω1,i
p )sQxi

2 Rxi
2 R′

1,i = hs
1,iQ

αxiRxi
2 R′

1,i And C2,i =

(gb2yi+ω2,i
p )sQyi

3 Ryi

3 R′
2,i = hs

2,iQ
βyiRyi

3 R′
2,i where we denote Q3 = gα

q . β = 0
if T = T1 and β is random number in ZN if T = T2.

When receiving V = v1...vi...vt from adversary A, the challenger C generates
corresponding token as follows. According to Definition 4, V should be subject
to (i)

∑t
i=1 yivi = 0 =

∑t
i=1 xivi or (ii)

∑t
i=1 yivi �= 0 and

∑t
i=1 xivi �= 0. We

handle token generation in this two conditions separately.

Case (i)
∑t

i=1 yivi = 0 =
∑t

i=1 xivi:
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The challenger first randomly selects f̃1, f̃2 and r′1,i, r′2,i from ZN . Then, it

calculates K1,i = (ga
pgq)f̃1vig

r′
1,i

p = g
af̃1vi+r′

1,i
p gf̃1vi

q . We denote r1,i = af̃1vi + r′1,i

and f1 = f̃1. It also calculates K2,i = (ga
pgq)f̃2vig

r′
2,i

p = g
af̃2vi+r′

2,i
p gf̃2vi

q where we
denote r2,i = af̃2vi + r′2,i and f2 = f̃2.

K0 is calculated by K0 = Q′′R′′ ∏t
i=1 h

−r1,i

1,i h
−r2,i

2,i

= QR
∏t

i=1 g
−(bxi+ω1,i)(af̃1vi+r′

1,i)
p g

−(b2yi+ω2,i)(af̃2vi+r′
2,i)

p

= QR
∏t

i=1 g
−(abf̃1xivi+br′

1,ixi+aω1,i f̃1vi+r′
1,iω1,i+ab2f̃2yivi+b2r′

2,iyi+af̃2ω2,ivi+r′
2,iω2,i)

p

= QR
∏t

i=1 g
−a(ω1,if̃1vi+f̃2ω2,ivi)
p g

−b(r′
1,ixi)

p g
−b2(r′

2,iyi)
p g

−(r′
1,iω1,i+r′

2,iω2,i)
p since

∑t
i=1 yivi =

0 =
∑t

i=1 xivi. Then, K0 = QR
∏t

i=1 (ga
pgq)−(ω1,i f̃1vi+f̃2ω2,ivi)h

−(r′
1,ixi)

p k
−(r′

2,iyi)
p g

−(r′
1,iω1,i+r′

2,iω2,i)
p

Case (ii)
∑t

i=1 yivi = cy �= 0 and
∑t

i=1 xivi = cx �= 0:

The challenger firstly randomly chooses f̃1, f̃2 and r′1,i, r′2,i from ZN . Then, it cal-

culates K1,i = (ga
pgq)f̃1vi(gab

p Q1)−cy f̃2vig
r′
1,i

p = g
af̃1vi−abcy f̃2vi+r′

1,i
p g

f̃1vi−dcyf̃2vi
q

where we denote Q1 = gd
q . And we denote r1,i = af̃1vi − abcyf̃2vi + r′1,i and

f1 = f̃1 − dcy f̃2. It also calculates K2,i = (ga
pgq)cxf̃2vig

r′
2,i

p = g
acxf̃2vi+r′

2,i
p gcxf̃2vi

q .
Where we denote r2,i = acxf̃2vi + r′2,i and f2 = cxf̃2.

K0 is generated by K0 = Q′′R′′ ∏t
i=1 h

−r1,i

1,i h
−r2,i

2,i

= QR
∏t

i=1 g
−(bxi+ω1,i)(af̃1vi−abcy f̃2vi+r′

1,i)
p g

−(b2yi+ω2,i)(acxf̃2vi+r′
2,i)

p

= QR
∏t

i=1 g
−(abf̃1xivi−ab2cy f̃2xivi+br′

1,ixi+af̃1ω1,ivi−abcy f̃2ω1,ivi+r′
1,iω1,i+ab2cxf̃2yivi+b2r′

2,iyi+acxf̃2viω2,i+r′
2,iω2,i)

p

= QR
∏t

i=1 g
−a(f̃1ω1,ivi+cxf̃2viω2,i)
p g

−ab(f̃1xivi−cy f̃2ω1,ivi)
p g

−b(r′
1,ixi)

p g
−b2(r′

2,iyi)
p g

−(r′
1,iω1,i+r′

2,iω2,i)
p

= QR
∏t

i=1 (ga
pgq)−(f̃1ω1,ivi+cxf̃2viω2,i)(gab

p Q1)−(f̃1xivi−cyf̃2ω1,ivi)h
−(r′

1,ixi)
p k

−(r′
2,iyi)

p g
−(r′

1,iω1,i+r′
2,iω2,i)

p

According to the symmetric property of scheme Π2, (X, Y )
c≡ (0, Y ) and

(0, Y )
c≡ (Y, Y ) can be proved similarly.

G Proof of Theorem 2

Proof. We first assume that the encryption scheme in Section 4.2 is not selective-
ID secure in the MR model. That is there exists an PPT Adversary A1 with
non-negligible advantage ε in the game of Definition 2. Now we construct a PPT
adversary A2 which acts as Challenger interacting with A1 and show that it can
win the game of Definition 1 also with non-negligible advantage with the scheme
Π3 = (Setup′, Encrypt′, GenTK′, Test′).
Setup: The adversary A2(1n) runs adversary A1(1n). Adversary A1 outputs two
possible equal-length vector X0 and X1 to adversary A2.

Adversary A2 passes X0 and X1 to the challenger C.
The challenger C takes a security parameter n and runs Setup to generate

pk and sk; C sends pk to adversary A2. A2 passes pk to A1.
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Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, Xb) to adversary A2. Adversary A2 passes it to adversary
A1.
Phase 1: The adversary A1 adaptively requests polynomially bounded tokens
for any (Vi, ti) subject to the restriction that ti < HammingDist(Vi, Xj) for
both j = 0, 1. When receiving the request (Vi, ti), adversary A2 generates ti +
1 token requests to the challenger C that (Vi, 0), ..., (Vi, ti) and receives token
TK0, ..., TKti. Adversary A2 answers adversary A1 with (TK0, ..., TKti).
Guess: Adversary A1 returns with the output bit b′. The adversary A2 passes b′

as its output to the challenger C.
Since we have the restriction in MR definition that ti < HammingDist(Vi, Xj)

for both j = 0, 1, k �= HammingDist(Vi, Xj) for each k ∈ {0, ..., ti}. And
therefore, A2’s token requests satisfy the requirement in MC definition that
ti = HammingDist(Vi, Xj) for both j = 0, 1 or ti �= HammingDist(Vi, Xj) for
both j = 0, 1.

The advantage A2 in the above MC game |Pr[b′ = b]− 1
2 | = AdvMR

Π3,A1
(n) =

ε which is non-negligible in security parameter n. However, according to our
security analysis in Section 3, the non-negligible advantage is impossible. This
completes our security proof.

H Secure tmax update

To support tmax update, we need do some modifications on the scheme in Sec-
tion 4.1. The new encryption scheme allowing tmax update consists of five PPT
algorithms ΠH = (Setup, Encrypt, UpdateCipher, GenTK, Test):

– Setup(1n) : It first runs G(1n) to obtain (p, q, r, G, GT , e). Then, it randomly
selects gp from Gp, gq from Gq and gr from Gr. It also randomly selects
{h1,l,i, h2,l,i} from Gp where l ∈ [1, m + 1] and i ∈ [1,

(
m
l

)
]. (So, the to-

tal number of terms is 2m.) Then, it randomly selects h3, h4 from Gp. It
also randomly selects R, {R1,l,i, R2,l,i}l∈[1,m+1],i∈[1,(m

l )], R3, R4 from Gr. It
outputs

pk =

⎧⎨
⎩

gp, gr, Q = gqR,
[H1,l,i = h1,l,iR1,l,i, H2,l,i = h2,l,iR2,l,i]l∈[1,m+1],i∈[1,(m

l )] ,
H3 = h3R3, H4 = h4R4

⎫⎬
⎭

and

sk = {p, q, r, gq, [h1,l,i, h2,l,i]l∈[1,m+1],i∈[1,(m
l )], h3, h4}

– Encrypt(pk, X): Rather than outputting ciphertext C, it also outputs state
S = {α, β, s} used.

– GenTK(pk, sk, V ) : The same as the original algorithm.
– UpdateCipher(pk, T ′, tmax, X, S) : It randomly selects {R′

1,l,i, R
′
2,l,i}l∈[tmax+2,T ′+1],i∈[1,(m

l )]
from Gr. Then, it outputs δ:
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{[
C1,l,i = Hs

1,l,iQ
αxj1 ...xjl R′

1,l,i,

C1,l,i = Hs
2,l,iQ

βxj1 ...xjl R′
2,l,i

]
l∈{tmax+2,T ′+1},i∈[1,(m

l )],1≤j1<...<jl≤m

}

– Test(pk, sk, TK, C) The same as the original algorithm.

Then, we also need to define a proper security definition concerning tmax

updates.

Definition 5. (Selective-ID secure in match-concealing mode with tmax update
capability) The encryption scheme ΠH = (Setup, Encrypt, UpdateCipher,GenTK, Test)
is MC secure if for all probabilistic polynomial-time Turing machine (adversary)
A, the advantage of A in the following game is negligible.

Setup: The adversary A(1n) outputs two possible equal-length (m-length where
2m = poly(n)) vectors X0 and X1 to the challenger C. The challenger C takes
a security parameter n and runs Setup to generate pk and sk. Adversary A is
given pk.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes (C∗, S∗) $←
Encrypt(pk, Xb). C returns C∗ to adversary A.
Phase 1: The adversaryAmay adaptively request polynomially bounded number
of queries. The types of queries allowed are described as below:

– GenTK: AdversaryA can request C to compute and return tokens of any (Vi =
vi,1...vi,m, ti) where ti ≤ tmax and Vi subject to the restriction that ti <
HammingDist(Vi, Xj) for both j = 0 and 1, or ti ≥ HammingDist(Vi, Xj)
for both j = 0 and 1.

– UpdateCipher: Adversary A outputs T ′ (tmax < T ′ ≤ m) to the challenger

C. The challenger C computes and returns δ
$← UpdateCipher(pk, T ′, tmax, Xb, S

∗)
to adversary A. The challenger also records T ′ as the new tmax.

Guess: Adversary A outputs a guess bit b′. The advantage of A is defined as
|Pr[b′ = b]− 1

2 |.
Theorem 3. The encryption scheme ΠH = (Setup, Encrypt, UpdateCipher, GenTK, Test)
defined here is Selective-ID secure in match-concealing mode with tmax update
capability.

Proof. The above theorem is proved in two steps. We first modify the inner-
product encryption defined in Section 4.1 to a scheme ΠI supporting ciphertext
updates. Similar to the method in Lemma 3, we prove in Lemma 5 that if this
modified inner-product encryption scheme ΠI is Selective-ID secure in match-
concealing mode with tmax update capability, then, the encryption scheme ΠH =
(Setup, Encrypt, UpdateCipher, GenTK, Test) defined here is also Selective-ID
secure in match-concealing mode with tmax update capability.

The second step is that we prove this modified inner-product encryption
scheme ΠI is Selective-ID secure in match-concealing mode with tmax update if
inner-product encryption scheme Π2 defined in Section 4.1 is MC secure (Defi-
nition 4 and Lemma 4). It is proved by Lemma 6.
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To prove the first stage, we first describe the modified inner-product encryp-
tion scheme which also consists of five PPT algorithms
ΠI = (Setup, Encrypt, UpdateCipher, GenTK, Test):

– Setup(1n). It first runs G(1n) to obtain (p, q, r, G, GT , e). Then, it randomly
selects gp from Gp, gq from Gq and gr from Gr. It also randomly selects
{h1,i, h2,i}i∈[1,Lmax] from Gp, and then randomly selects R, {R1,i, R2,i}i∈[1,Lmax]

from Gr. It outputs Lmax and a description of a deterministic function
g(d, l, X) such that d + l ≤ Lmax and the output length |g(d, l, X)| = d.
(This pre-defined function restricts adversary cannot adaptively updates ci-
phertext.) It also outputs public key pk and secret key sk:

pk = {gp, gr, Q = gqR, [H1,i = h1,iR1,i, H2,i = h2,iR2,i]i∈[1,Lmax]}
and

sk = {p, q, r, gq, [h1,i, h2,i]i∈[1,Lmax]}

– Encrypt(pk, X = x1...xi...xlmax): Rather than outputting ciphertext C, it
also outputs state S = {α, β, s} used. Where lmax ≤ Lmax.

– UpdateCipher(pk, X ′ = x′
1...x

′
L′ = g(L′, lmax, X), S): It randomly selects

{R′
1,i, R

′
2,i}i∈[1,L′] from Gr. Then, it outputs

δ = {C1,i+lmax = Hs
1,i+lmax

Qαx′
iR′

1,i, C2,i+lmax = Hs
2,i+lmax

Qβx′
iR′

2,i}i∈[1,L′]

– GenTK(pk, sk, V = v1...vi...vt): The same as the original algorithm.
– Test(pk, TK, C): The same as the original algorithm.

We define its security definition as follows.

Definition 6. (Selective-ID secure in match concealing mode with tmax update
capability) The encryption scheme ΠI = (Setup, Encrypt, UpdateCipher, GenTK, Test)
is MC secure if for all probabilistic polynomial-time Turing machine (adversary)
A, the advantage of A in the following game is negligible.

Setup: The adversaryA(1n) outputs two possible equal-length (lmax-length) vec-
tors X0 and X1. The challenger C takes a security parameter n and runs Setup
to generate pk and sk. C sends pk to A. Setup also outputs Lmax = poly(n) and
function g().

Challenge: The challenger picks a random bit b ∈ {0, 1}, computes (C∗, S∗) $←
Encrypt(pk, Xb). C∗ is given to adversary A.
Phase 1: The adversaryAmay adaptively request polynomially bounded number
of queries. The types of queries allowed are described as below:

– GenTK: Adversary A may adaptively request challenger C of tokens for any
Vi = vi,1...vi,ti where ti ≤ lmax and Vi subject to the restriction that∑ti

k=1 xj,kvi,k = 0 for both j = 0, 1 or
∑ti

k=1 xj,kvi,k �= 0 for both j = 0, 1.
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– UpdateCipher: AdversaryA outputs two equal-length (L′-length) vectors X ′
0

and X ′
1 where X ′

0 = g(L′, lmax, X0) and X ′
1 = g(L′, lmax, X1). lmax + L′ ≤

Lmax where Lmax is decided at Setup time. AdversaryA sends X ′
0 and X ′

1 to

challenger C. The challenger C computes and returns δ
$← UpdateCipher(pk, X ′

b, S
∗)

to adversary A. C also record lmax + L′ as the new lmax.

Guess: The adversaryA outputs a bit b′ to guess b. The advantage ofA is defined
as |Pr[b′ = b]− 1

2 |.
Lemma 5. The encryption scheme ΠH is secure under Definition 5 if inner-
product encryption scheme ΠI is secure under Definition 6.

Proof. We first assume that there exists an adversary A1 who wins Definition 5
with non-negligible advantage. Then, we try to construct an adversary A2 who
can win Definition 6 also with non-negligible.
Setup: Adversary A2(1n) runs A1(1n). A1(1n) outputs two possible equal-length
(m-length) vector X0 and X1 to A2.

A2 calculates
∑tmax+1

i=0

(
m
i

)
-length vectors X̃0 and X̃1 to challenger C. The

Challenger C takes a security parameter n and runs Setup to generate pk and
sk. Set Lmax = 2m. C sends pk to adversary A2. A2 rearranges pk and sends it
to A1.
Challenge: The challenger C picks a random bit b ∈ {0, 1} and computes (C∗, S∗) $←
Encrypt(pk, Xb). C sends C∗ to adversary A2. A2 rearranges C∗ and sends to it
A1.
Phase 1: Adversary A1 may adaptively request polynomially bounded GenTK
and UpdateCipher queries.

– GenTK: The adversary A1 requests tokens to A2 for any (Vi = vi,1...vi,m, ti)
where ti ≤ tmax and Vi subject to the restriction that ti < HammingDist(Vi, Xj)
for both j = 0 and 1 or HammingDist(Vi, Xj) ≤ ti for both j = 0 and 1.
When receiving (V, t), adversary A2 calculates Ṽ = ṽ1, ..., ṽ∑ t+1

i=0 (m
i ) such

that
∑

ṽix̃j,i = 1 if and only if HammingDist(V, Xj) ≤ t. A2 submits Ṽ to
challenger C and gets token.
A2 rearranges the token and sends it to A1.

– UpdateCipher: The adversary A1 outputs m ≥ T ′ > tmax to A2. A2 based
on X0 and X1 and T ′ to calculate two equal-length (L′ =

∑T ′+1
i=tmax+2

(
m
i

)
-

length) vectors X ′
0 and X ′

1 (according to a in (5) or equivalently, g(L′, lmax, X0)
and g(L′, lmax, X1)). Adversary A2 passes X ′

0 and X ′
1 to challenger C.

The challenger C returns δ
$← UpdateCipher(pk, X ′

b, S
∗) to adversary A2.

Challenger C also updates lmax as L′ + lmax. A2 rearranges δ and sends to
A1.

Guess: The adversary A1 outputs a bit b′ to guess b. A2 passes b′ to challenger
C as its output.

Then, we prove Lemma 6 to complete the proof for Theorem 3.
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Lemma 6. The scheme ΠI = (Setup, Encrypt, UpdateCipher, GenTK, Test) is se-
cure under Definition 6 if Π2 = (Setup, Encrypt, GenTK, Test) is secure under
Definition 4.

Proof. This proof is by contradiction. We first assume that there exists an ad-
versary A1 who wins Selective-ID game in match-concealing mode with tmax

update capability with non-negligible advantage ε, then we can construct an
adversary A2 who wins Definition 4 also with non-negligible advantage ε.
Setup: The adversary A2(1n) runs A1(1n). A1(1n) outputs two possible equal-
length (lmax-length) vectors X0 and X1 to A2. Note that lmax ≤ Lmax.

The adversary A2 calculates and outputs two Lmax-length vectors X
(max)
0

and X
(max)
1 to challenger C where X

(max)
0 = g(Lmax, 0, X0) and X

(max)
1 =

g(Lmax, 0, X1).
The challenger C takes a security parameter n and runs Setup to generate

pk and sk (for Lmax-length). C returns pk to adversary A2(1n). The adversary
A2 passes pk to A1.
Challenge: The challenger C picks a random bit b ∈ {0, 1}, computes and returns

C∗ $← Encrypt(pk, X
(max)
b ) to adversary A2.

The adversary A2 takes the first lmax components of ciphertext C∗ and
returns it (denoted as C∗

lmax
) to A1.

Phase 1: The adversary A1 may adaptively request polynomially-bounded num-
ber of GenTK and UpdateCipher queries.

– GenTK: The adversaryA1 may adaptively request tokens for any Vi = vi,1...vi,ti

where ti ≤ lmax and Vi subject to the restriction that
∑ti

k=1 xj,kvi,k = 0 for
both j = 0 and 1 or

∑ti

k=1 xj,kvi,k �= 0 for both j = 0 and 1. A1 sends these
requests to A2.
The adversary A2 passes these requests to the challenger C. Note that ti ≤
lmax ≤ Lmax. The challenger generates tokens and adversaryA2 passes them
to A1.

– UpdateCipher: The adversary A1 outputs two equal-length (L′-length) vec-
tors X ′

0 and X ′
1 where X ′

0 = g(L′, lmax, X0) and X ′
1 = g(L′, lmax, X1). The

adversary A1 passes X ′
0 and X ′

1 to A2.
The adversary A2 passes δ = C∗[lmax + 1, lmax + L′] to A1. The adversary
A2 also records lmax + L′ as the new lmax.

Guess: The adversary A1 outputs a bit b′ to A2. And A2 passes b′ to the chal-
lenger C as its output. Note that |Pr[b′ = b]− 1

2 | = ε. This completes our proof.


